4,747 research outputs found

    Application of pressure-sensitive paints to unsteady and high-speed flows

    Get PDF
    The Pressure-Sensitive Paint (PSP) technique allows the global pressure mapping of surfaces under aerodynamic conditions. The present study involves the application of Tris- Bathophenanthroline Ruthenium Perchlorate based PSP, developed in-house, to two different cases; a) the flow through a sonic nozzle, and b) the examination of the effect of dimples on glancing shock wave turbulent boundary layer interactions at transonic speeds

    On Fabry P\'erot Etalon based Instruments. I. The Isotropic Case

    Full text link
    Here we assess the spectral and imaging properties of Fabry P\'erot etalons when located in solar magnetographs. We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases, we focus on the effects caused by the polychromatic illumination of the filter by the irregularities in the optical thickness of the etalon and by deviations from the ideal illumination in both setups. We first review the general properties of Fabry P\'erots and we then address the different sources of degradation of the spectral transmission profile. We review and extend the general treatment of defects followed by different authors. We discuss the differences between the point spread functions (PSFs) of the collimated and telecentric configurations for both monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to collimated mounts is shown to have a better performance, although it varies from point to point due to an apodization of the image inherent to this configuration. This is in contrast to the (perfect) telecentric case, where the PSF remains constant but produces artificial velocities and magnetic field signals because of its strong spectral dependence. We find that the unavoidable presence of imperfections in the telecentrism produces a decrease of flux of photons and a shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field of view, thus compromising their advantages over the collimated configuration. We evaluate these effects for different apertures of the incident beam.Comment: 20 pages 22 figures 2 Appendice

    Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements

    Full text link
    Observations of the Sun from the Earth are always limited by the presence of the atmosphere, which strongly disturbs the images. A solution to this problem is to place the telescopes in space satellites, which produce observations without any (or limited) atmospheric aberrations. However, even though the images from space are not affected by atmospheric seeing, the optical properties of the instruments still limit the observations. In the case of diffraction limited observations, the PSF establishes the maximum allowed spatial resolution, defined as the distance between two nearby structures that can be properly distinguished. In addition, the shape of the PSF induce a dispersion of the light from different parts of the image, leading to what is commonly termed as stray light or dispersed light. This effect produces that light observed in a spatial location at the focal plane is a combination of the light emitted in the object at relatively distant spatial locations. We aim to correct the effect produced by the telescope's PSF using a deconvolution method, and we decided to apply the code on Hinode/SP quiet Sun observations. We analyze the validity of the deconvolution process with noisy data and we infer the physical properties of quiet Sun magnetic elements after the deconvolution process.Comment: 14 pages, 9 figure

    Detection of emission in the Si i 1082.7 nm line core in sunspot umbrae

    Full text link
    We analyze spectropolarimetric sunspot umbra observations taken in the near-infrared Si i 1082.7 nm line taking NLTE effects into account. The data were obtained with the GRIS instrument installed at the German GREGOR telescope. A point spread function (PSF) was constructed using prior Mercury observations with GRIS and the information provided by the adaptive optics system of the GREGOR telescope. The data were then deconvolved from the PSF using a principal component analysis deconvolution method and were analyzed via the NICOLE inversion code. The Si i 1082.7 nm line seems to be in emission in the umbra of the observed sunspot after the effects of scattered light are removed. We show how the spectral line shape of umbral profiles changes dramatically with the amount of scattered light. Indeed, the continuum levels range, on average, from 44% of the quiet Sun continuum intensity to about 20%. The inferred levels are in line with current model predictions and empirical umbral models. Current umbral empirical models are not able to reproduce the emission in the deconvolved umbral Stokes profiles. The results of the NLTE inversions suggests that to obtain the emission in the Si i 1082.7 nm line, the temperature stratification should first have a hump located at about log tau -2 and start rising at lower heights when moving into the transition region. This is, to our knowledge, the first time the Si i 1082.7 nm line is seen in emission in sunspot umbrae. The results show that the temperature stratification of current umbral models may be more complex than expected with the transition region located at lower heights above sunspot umbrae. Our finding might provide insights into understanding why the sunspot umbra emission in the millimeter spectral range is less than that predicted by current empirical umbral models

    Study of detonation interactions inside a 2-D ejector using detonation transmission tubing

    Get PDF
    • …
    corecore